HCMC UNIVERSITY OF **TECHNOLOGY AND EDUCATION Faculty of International Education Foundation Science group**

Note:

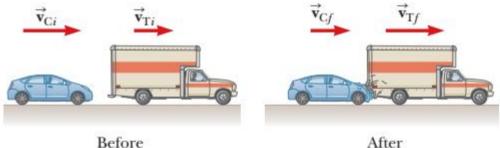
- + Proctors are not allowed to give any unauthorized explanation.
- + Students are allowed to use one A4 paper sheet as a memory aid.

Question 1: (1.0 marks/10)

An object is launched at some angle to the horizontal with some initial speed v_i , and air resistance is negligible.

- (a) What is its acceleration in the vertical direction?
- (b) What is its acceleration in the horizontal direction?

Question 2: (2.0 marks/10)


The driver brakes the car when he sees a tree blocking the road. The car slows uniformly with an acceleration of -5.6 m/s^2 for 4.2 s, and slides a distance of 62.4 m, all the way to the tree. At what speed does the car strike the tree?

Question 3: (2.0 marks/10)

A 1200-kg car traveling initially at $v_{Ci} = 25.0$ m/s in an easterly direction crashes into the back of a 9000-kg truck moving in the same direction at $v_{Ti} = 20.0$ m/s (see the figure below). The velocity of the car immediately after the inelastic collision is $v_{Cf} = 18.0$ m/s to the east.

(a) What is the velocity of the truck immediately after the collision?

- (b) What is the change in mechanical energy of the car-truck system in the collision?
- (c) Account for this change in mechanical energy.

Before

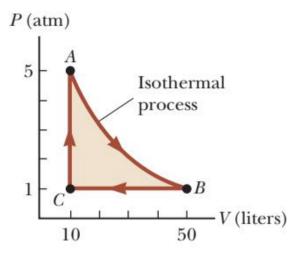
Question 4: (2.0 marks/10)

Two blocks are connected by a string of negligible mass passing over a pulley of radius r = 0.25 m and of mass M = 5.0 kg as shown in figure on the right. The pulley is a solid disk, free to rotate about the horizontal axis passing through its center. The string does not stretch. The coefficient of kinetic friction between m₁ and the incline is 0.36.

Determine:

(a) the acceleration of the object

(b) the tensions in the string on both sides of the pulley.


Question 5: (1.0 marks/10)

Common thermometers are made of a mercury column in a glass tube. Based on the operation of these thermometers, which has the larger coefficient of linear expansion, glass or mercury? (Don't answer the question by looking in a table.)

Question 6: (2.0 marks/10)

A 1.00-mol sample of an ideal monatomic gas (having 3 degrees of freedom) is taken through the cycle shown in figure on the right. The process A - B is an isothermal expansion. Calculate:

- (a) the net work done by the gas
- (b) the energy added to the gas by heat
- (c) the energy exhausted from the gas by heat
- (d) the efficiency of the cycle.

The universal gas constant is R = 8.31 J/mol.K The magnitude of the free-fall acceleration is g = 9.80 m/s² 1 atm = 101300 Pa

Learning outcome mapping	Assessed in
[ELO 1.1]: Understanding various concepts, theorems, and laws related to classical mechanics and fluid mechanics.	Questions 1
[ELO 2.1]: Applying the knowledge and skills required to solve the problems in mechanics. [ELO 3.1]: To express the learned knowledge by problem solving capability and answer questions related to the concepts learned.	Questions 2, 3, 4
[ELO 2.1]: Applying the principles of thermodynamics to explain the phenomena related to the temperature as well as solving the related problems. [ELO 3.1]: To express the learned knowledge by problem solving capability and answer questions related to the concepts learned.	Questions 5, 6

20th May, 2025 Approved by program chair